Skip to main content
Sister Publication Links
  • Plastics News
Subscribe
  • Newsletters
  • Login
  • SUBSCRIBE
  • News
    • Recycling
    • Sustainability
    • Bioplastics
    • Technology & Materials
    • Injection Moulding
    • Blow Moulding
    • Extrusion
    • Thermoforming
    • 3D printing
    • Technology
    • Materials
    • Machinery
  • Opinion
    • View Point
  • Events
    • Our Exhibitions
    • Plastics Industry Awards (PIA)
    • Ask the Expert
    • Reifenhäuser Technologies Livestreams
    • Plastics News Europe Live Archives
    • Sustainable Plastics Live
    • Bioplastics Live
    • Plastics Recycling Show Europe
    • Plastics Recycling Show Middle East & Africa
  • Prices & Resources
    • Polymer Prices
    • Data Reports
    • Sponsored Content
    • White Papers
  • Contact
    • Advertise
    • Media Pack
  • Subscribe
  • Digital magazine
    • Digital Magazine
  • Multimedia
MENU
Breadcrumb
  1. Home
  2. News
May 08, 2023 02:55 PM

Solvolysis is best way to recycle biocomposites used in aeronautics

New study shows dissolution is more carbon-friendly than pyrolysis

Karen Laird
  • Tweet
  • Share
  • Share
  • Email
  • More
    Print
    Aimplas Eliot
    AIMPLAS

    In response to the trend in the aviation industry to mitigate its environmental impact through the use of  biocomposite materials, two research centres - Spain-based Aimplas and TNO in the Netherlands - collaborated on a new study researching different methods of chemical recycling for these biocomposites. Biocomposites use natural fibres for reinforcement and resins from renewable sources. However, the relative unfamiliarity with these thermosets, their heterogeneous nature and the fact that they lack carbon fibres, which have a high market value, make it difficult to find an efficient end-of-life solution.

    The study looked at 12 methods for six different biocomposites, searching for the best technology in terms of technical and economic feasibility. The two most promising technologies were solvolysis and pyrolysis both of which were tested in large-scale production at a pilot plant. The results of the study, called the Eliot Project, revealed that pyrolysis emits 17% more carbon dioxide and consumes twice as much heat as solvolysis.

    Solvolysis uses solvents as a substitute for heat, but these solvents are recovered with great efficiency and reused in the process. The study has also shown that solvolysis works even better on large biocomposites.

    For both pyrolysis and solvolysis, additional purification steps are required to be able to use the pyrolysis liquid and the distilled product, respectively. These estimates were made based on a processing plant with a capacity of 10 kilotonnes of biocomposites per year.

    Other technologies analysed in the study included mechanical recycling, dissolution, enzymatic degradation, gasification and composting.

    The Eliot Project received funding from the European Union’s Horizon 2020 research and innovation programme within the framework of the Clean Sky Joint Technology Initiative under grant agreement number 886416.

     

    Newsletters
    EMAIL ADDRESS

    Please enter a valid email address.

    Please enter your email address.

    Please verify captcha.

    Please select at least one newsletter to subscribe.

    Get our newsletters

    Staying current is easy with Sustainable Plastics' news delivered straight to your inbox, free of charge.

    SUBSCRIBE
    Sustainable Plastics Media Kit Cover

    Subscriptions to Sustainable Plastics, the leading Pan-European magazine for the circular plastics industry.

    Subscribe now
    Connect with Us
    • LinkedIn
    • Twitter

    "In a changing world, Sustainable Plastics is a constant: a platform the plastics industry can rely on to deliver the news and knowhow impacting the industry going forward”

    Contact Us

    11 Ironmonger Lane, EC2V 8EY
    United Kingdom 
     

    Customer Service:
    1-313-446-0450

    [email protected]

     

    Resources
    • Advertise
    • Sitemap
    • Careers
    • Subscribe
    Affiliates
    • Plastics News
    • LSR World
    • Urethanes Technology
    • Tire Business
    • Rubber News
    • Automotive News
    • Automotive News Europe
    • Crain Publications
    Legal
    • Terms and Conditions
    • Privacy Policy
    • Privacy Request
    Copyright © 1996-2023. Crain Communications, Inc. All Rights Reserved.
    • News
      • Recycling
      • Sustainability
      • Bioplastics
      • Technology & Materials
        • Injection Moulding
        • Blow Moulding
        • Extrusion
        • Thermoforming
        • 3D printing
        • Technology
        • Materials
        • Machinery
    • Opinion
      • View Point
    • Events
      • Our Exhibitions
        • Plastics Recycling Show Europe
        • Plastics Recycling Show Middle East & Africa
      • Plastics Industry Awards (PIA)
      • Ask the Expert
      • Reifenhäuser Technologies Livestreams
      • Plastics News Europe Live Archives
      • Sustainable Plastics Live
      • Bioplastics Live
    • Prices & Resources
      • Polymer Prices
      • Data Reports
      • Sponsored Content
      • White Papers
    • Contact
      • Advertise
      • Media Pack
    • Subscribe
    • Digital magazine
      • Digital Magazine
    • Multimedia