Skip to main content
Sister Publication Links
  • Plastics News
Subscribe
  • Newsletters
  • Login
  • SUBSCRIBE
  • News
    • Recycling
    • Materials
    • Bioplastics
    • Policy & Regulation
    • Automation
    • Additive manufacturing
    • Machinery
    • Fakuma
    • Opinion
    • View Point
  • Events
    • Our Exhibitions
    • Our Conferences
    • Plastics Industry Awards (PIA)
    • Ask the Expert
    • Reifenhäuser Technologies Livestreams
    • Plastics News Europe Live Archives
    • Sustainable Plastics Live
    • Bioplastics Live
    • PFAS Live
    • Plastics Caps + Closures: A Global Online Event
  • PRS
    • About
    • Plastics Recycling Show Europe
    • Plastics Recycling Show Middle East & Africa
    • Plastics Recycling Show Asia
    • Plastics Recycling Show India
  • Polymer Prices
    • Polymer Prices Database
    • Polymer Prices News
  • Resources
    • Data Reports
    • Sponsored Content
    • White Papers
    • Multimedia
  • Contact
    • Advertise
    • Media Pack
  • Digital magazine
    • Digital Magazine
  • ChemRecTracker
MENU
Breadcrumb
  1. Home
  2. News
November 20, 2023 08:54 AM

Chemical recycling can contribute up to 34% to plastic recycling in Europe, says new study

Together, mechanical and chemical recycling can achieve a plastic recycling rate of up to 80% by 2030 in the best case scenario

Beatriz Santos
  • Tweet
  • Share
  • Share
  • Email
  • More
    chemical recycling

    If Europe is to achieve its plastics recycling targets, chemical recycling and mechanical recycling must complement each other, researchers from the Joint Research Centre (JRC) of the European Commission and the University of Gent and Maastricht concluded in a new study.

    The study uses a material flow analysis (MFA) at European level to provide quantitative estimates of the contribution of chemical recycling technologies to plastic recycling. The chemical recycling technologies considered are pyrolysis coupled with distillation, and hydrotreatment; gasification, coupled with Fischer-Tropsch Synthesis; and depolymerization.

    The ten polymers considered in the study are LLDPE, HDPE, PP, PET, PS, EPS, PVC, ABS, PU, and PA. These polymers are applied in different sectors with their specific use and end-of-life fate. The five sectors included are packaging, building and construction, automotive, electronic, and agriculture.

    The scientists modelled a 2018 status quo scenario and compared it with five potential scenarios in 2030, one that only looks at improved waste collection, sorting, and mechanical recycling technologies, and four exploring developments of chemical recycling options. The MFA results are compared by calculating four circularity indicators namely end-of-life recycling rate, plastic-to-plastic rate, plastic- to-chemicals rate, and plastic-to-fuels rate.

    Results show that the best scenario is one where mechanical recycling is improved and chemical recycling is developed as a complementary technology. In that optimal scenario, it is possible to achieve 80% plastic recycling rate by 2030, with mechanical recycling contributing 46% and chemical recycling 34%, 15% from plastic-to-plastic recycling and 19% from plastic-to-chemicals.

    “These findings illustrate the importance of balancing the plastic waste streams into [mechanical recycling] and [chemical recycling] options to reach the highest circularity potential possible, i.e. the two technologies need to be complementary and not competitive,” the scientists said.

    The study also shows that chemical recycling will be critical to meeting European recycling targets. In the packaging sector, the 55% recycling targets by 2030 stated by the Plastic Packaging Waste Directive (PPWD) cannot be achieved only by improving the current waste management treatments (i.e., collection, sorting, and mechanical recycling) as the estimated end-of-life recycling rate would only be 49%, according to the study. Chemical recycling and solvent-based recycling options can contribute to reach the recycling targets set by PPWD, as the end-of-life recycling rate is then expected to increase to 73% to 81%.

    The academics also noted that the plastic-to-plastic rate of chemical recycling can be improved, at the cost of plastic-to-chemical and plastic-to-fuel rates, by applying other pyrolysis conditions such as adding catalysts, hydrocracking, amongst others. One study suggests that the yield of olefins from a mixed polyolefin waste can increase up to around 75% by introducing catalysts. The limited plastic-to-plastic yield of current, unrefined, pyrolysis processes is often the target of chemical recycling critics.

    The scientists shared their findings in “How much can chemical recycling contribute to plastic waste recycling in Europe? An assessment using material flow analysis modeling,” recently published in Resources, Conservation & Recycling.

    Newsletters
    EMAIL ADDRESS

    Please enter a valid email address.

    Please enter your email address.

    Please verify captcha.

    Please select at least one newsletter to subscribe.

    Get our newsletters

    Staying current is easy with Sustainable Plastics' news delivered straight to your inbox, free of charge.

    SUBSCRIBE
    Sustainable Plastics Media Kit Cover

    Subscriptions to Sustainable Plastics, the leading Pan-European magazine for the circular plastics industry.

    Subscribe now
    Connect with Us
    • LinkedIn
    • Twitter

    "In a changing world, Sustainable Plastics is a constant: a platform the plastics industry can rely on to deliver the news and knowhow impacting the industry going forward”

    Contact Us

    11 Ironmonger Lane, EC2V 8EY
    United Kingdom 
     

    Customer Service:
    1-313-446-0450

    [email protected]

     

    Resources
    • Advertise
    • Sitemap
    • Careers
    • Subscribe
    Affiliates
    • Plastics News
    • LSR World
    • Urethanes Technology
    • Tire Business
    • Rubber News
    • Automotive News
    • Automotive News Europe
    • Crain Publications
    Legal
    • Terms and Conditions
    • Privacy Policy
    • Privacy Request
    Copyright © 1996-2023. Crain Communications, Inc. All Rights Reserved.
    • News
      • Recycling
      • Materials
      • Bioplastics
      • Policy & Regulation
      • Automation
      • Additive manufacturing
      • Machinery
      • Fakuma
      • Opinion
        • View Point
    • Events
      • Our Exhibitions
      • Our Conferences
        • Plastics Caps + Closures: A Global Online Event
      • Plastics Industry Awards (PIA)
      • Ask the Expert
      • Reifenhäuser Technologies Livestreams
      • Plastics News Europe Live Archives
      • Sustainable Plastics Live
      • Bioplastics Live
      • PFAS Live
    • PRS
      • About
      • Plastics Recycling Show Europe
      • Plastics Recycling Show Middle East & Africa
      • Plastics Recycling Show Asia
      • Plastics Recycling Show India
    • Polymer Prices
      • Polymer Prices Database
      • Polymer Prices News
    • Resources
      • Data Reports
      • Sponsored Content
      • White Papers
      • Multimedia
    • Contact
      • Advertise
      • Media Pack
    • Digital magazine
      • Digital Magazine
    • ChemRecTracker